Skip to content

[VUA@BMVC2024] Self-Supervised Contrastive Learning for Videos using Differentiable Local Alignment

Notifications You must be signed in to change notification settings

keynekassapa13/LAC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Self-Supervised Contrastive Learning for Videos using Differentiable Local Alignment

Keyne Oei, Amr Gomaa, Anna Maria Feit, João Belo

Pytorch code for "Self-Supervised Contrastive Learning for Videos using Differentiable Local Alignment" (https://arxiv.org/abs/2409.04607).

Environment Setup

To setup the env,

git clone https://github.com/keynekassapa13/LAC.git
cd LAC
conda env create -f env.yml
conda activate lac

Install pip packages

pip install --upgrade pip
pip install -r requirements.txt

Dataset

  • Pouring can be downloaded here.
  • PennAction can be downloaded here.
.
├── datasets
│   └── pouring
│         └── train.pkl
│         └── val.pkl
│         └── videos
│   └── penn_action
│         └── train.pkl
│         └── val.pkl
│         └── videos
├── LAC
│   └── config
│         └── pouring
│         └── pennaction
│   └── dataset
│         └── ...
│   └── evaluation
│         └── ...
│   └── model
│         └── ...
│   └── utils
│         └── ...
│   └── train.py
│   └── ...

Train

cd LAC
python train.py --config='config/pouring/lac.json'

Tensorboard

tensorboard --logdir='saved/logs' --port=6008

Citation

If you found our paper/code useful in your research, please consider citing our paper:

@misc{oei2024lac,
    title={Self-Supervised Contrastive Learning for Videos using Differentiable Local Alignment}, 
    author={Keyne Oei and Amr Gomaa and Anna Maria Feit and João Belo},
    year={2024},
    eprint={2409.04607},
    archivePrefix={arXiv},
    primaryClass={cs.CV},
    url={https://arxiv.org/abs/2409.04607}, 
}

About

[VUA@BMVC2024] Self-Supervised Contrastive Learning for Videos using Differentiable Local Alignment

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages