Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions src/transformers/models/modernbert/modeling_modernbert.py
Original file line number Diff line number Diff line change
Expand Up @@ -685,6 +685,12 @@ def init_weight(module: nn.Module, std: float):
curr_inv_freq, _ = rope_init_fn(module.config, layer_type=layer_type)
init.copy_(getattr(module, f"{layer_type}_inv_freq"), curr_inv_freq)
init.copy_(getattr(module, f"{layer_type}_original_inv_freq"), curr_inv_freq)
elif isinstance(module, ModernBertUnpaddedRotaryEmbedding):
inv_freq = module._compute_inv_freq()
module.register_buffer("inv_freq", inv_freq, persistent=False)
module._seq_len_cached = 0
module._cos_cached = None
module._sin_cached = None

def _check_and_adjust_attn_implementation(
self, attn_implementation: Optional[str], is_init_check: bool = False
Expand Down
6 changes: 6 additions & 0 deletions src/transformers/models/modernbert/modular_modernbert.py
Original file line number Diff line number Diff line change
Expand Up @@ -879,6 +879,12 @@ def init_weight(module: nn.Module, std: float):
curr_inv_freq, _ = rope_init_fn(module.config, layer_type=layer_type)
init.copy_(getattr(module, f"{layer_type}_inv_freq"), curr_inv_freq)
init.copy_(getattr(module, f"{layer_type}_original_inv_freq"), curr_inv_freq)
elif isinstance(module, ModernBertUnpaddedRotaryEmbedding):
inv_freq = module._compute_inv_freq()
module.register_buffer("inv_freq", inv_freq, persistent=False)
module._seq_len_cached = 0
module._cos_cached = None
module._sin_cached = None

def _check_and_adjust_attn_implementation(
self, attn_implementation: Optional[str], is_init_check: bool = False
Expand Down
58 changes: 58 additions & 0 deletions tests/models/modernbert/test_modeling_modernbert.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
require_flash_attn,
require_torch,
require_torch_accelerator,
require_torch_gpu,
slow,
torch_device,
)
Expand Down Expand Up @@ -599,6 +600,63 @@ def test_inference_sequence_classification(self):
expected = torch.tensor([[1.6466, 4.5662]])
torch.testing.assert_close(output, expected, rtol=1e-4, atol=1e-4)

@slow
@require_flash_attn
@require_torch_gpu
def test_inference_sequence_classification_flash_attention_2(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")

device = torch.device("cuda")

model = ModernBertForSequenceClassification.from_pretrained(
"hf-internal-testing/tiny-random-ModernBertForSequenceClassification",
reference_compile=False,
attn_implementation="flash_attention_2",
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained(
"hf-internal-testing/tiny-random-ModernBertForSequenceClassification"
)

inputs = tokenizer("Hello World!", return_tensors="pt")
inputs = {k: v.to(device=device) for k, v in inputs.items()}
with torch.no_grad():
output = model(**inputs)[0]
self.assertIsInstance(output, torch.Tensor)
expected_shape = torch.Size((1, 2))
self.assertEqual(output.shape, expected_shape)
self.assertFalse(torch.isnan(output).any().item())

expected = torch.tensor([[1.6466, 4.5662]], device=device)
torch.testing.assert_close(output, expected, rtol=1e-2, atol=1e-2)

@slow
@require_flash_attn
@require_torch_gpu
def test_inference_sequence_classification_flash_attention_2_modernbert_base(self):
if version.parse(torch.__version__) < version.parse("2.4.0"):
self.skipTest(reason="This test requires torch >= 2.4 to run.")

device = torch.device("cuda")

model = ModernBertForSequenceClassification.from_pretrained(
"answerdotai/ModernBERT-base",
reference_compile=False,
attn_implementation="flash_attention_2",
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")

inputs = tokenizer("Hello World!", return_tensors="pt")
inputs = {k: v.to(device=device) for k, v in inputs.items()}
with torch.no_grad():
output = model(**inputs)[0]
self.assertIsInstance(output, torch.Tensor)
expected_shape = torch.Size((1, 2))
self.assertEqual(output.shape, expected_shape)
self.assertFalse(torch.isnan(output).any().item())

@pytest.mark.torch_export_test
@slow
def test_export(self):
Expand Down