Skip to content

NECOTIS/ALCA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ALCA

Adaptive approach for sparse representations using the locally competitive algorithm for audio , available at https://github.com/SoufiyanBAHADI/ALCA. This is the code for the preprint available at https://doi.org/10.1109/MLSP52302.2021.9596348

Installation

The required python packages are listed in requirements.txt, and can be installed with:

pip install -r requirements.txt

Usage

cd ALCA
python main.py

optional arguments:
  -h, --help            shows this help message and exit
  -p PATH, --path PATH  The path of the data set.
  --tau TAU             Neurons' time constant.
  --dt DT               Euler's resolution method clock.
  --threshold THRESHOLD
                        Firing threshold.
  --stride STRIDE       Stride size.
  --ker-len KER_LEN     Kernels' length.
  --num-chan NUM_CHAN   Number of channels.
  --iters ITERS         The LCA's iterations.
  --optimizer {sgd,adam}
                        The optimizer needed for training.
  --lr LR               Learning rate.
  --batch-size BATCH_SIZE
                        the size of each mini batch.
  --buffer-size BUFFER_SIZE
                        The size of the buffer where to store steady states
                        for backpropagation through time algorithm
  -e EPOCHS, --epochs EPOCHS
                        number of epochs.
  --eval                Specifies the evaluation. If false the algorithm will
                        run in training mode
  -v, --verbose         allows the program verbosity
  --random-init         parameters are initiallized randomly
  --resume RESUME       The epoch from which the learning will resume
  --plot                If specified the program will plot all outputs. --eval
                        should be specified

Acknowledgements

© Copyright (June 2021) Soufiyan Bahadi, prof. Jean Rouat, prof. Éric Plourde. University of Sherbrooke. NEuro COmputational & Intelligent Signal Processing Research Group (NECOTIS)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%