Skip to content

InftyAI/AMRS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

86 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AMRS

Latest Release

The Adaptive Model Routing System (AMRS) is a framework designed to select the best-fit model for exploration and exploitation. Rust core with python bindings. Still under active development 🚧.

AMRS builds on top of async-openai to provide API services for quick setup. Thanks to open source 💙.

Features

  • Endpoints Support (only basic ones because of limited resources):

    • Chat Completions
    • Responses
    • More on the way
  • Flexible Routing Strategies:

    • Random(default): Randomly selects a model from the available models.
    • WRR: Weighted Round Robin selects models based on predefined weights.
    • UCB1: Upper Confidence Bound for balancing exploration and exploitation (coming soon).
    • Adaptive: Dynamically selects models based on performance metrics (coming soon).
  • Various Providers Support:

    • OpenAI compatible providers (OpenAI, DeepInfra, etc.)
    • More on the way

How to Install

Run the following Cargo command in your project directory:

cargo add arms

Or add the following line to your Cargo.toml:

arms = "0.0.1"

How to Use

Here's a simple example with the Weighted Round Robin (WRR) routing mode. Before running the code, make sure to set your provider API key in the environment variable by running export <PROVIDER>_API_KEY="your_openai_api_key". Here we use OpenAI as an example.

// Make sure OPENAI_API_KEY is set in your environment variables before running this code.

use arms::client;
use arms::types::chat;
use tokio::runtime::Runtime;

fn main() {
    let config = client::Config::builder()
        .provider("deepinfra")
        .routing_mode(client::RoutingMode::WRR)
        .model(
            client::ModelConfig::builder()
                .name("deepseek-ai/DeepSeek-V3.2")
                .weight(2)
                .build()
                .unwrap(),
        )
        .model(
            client::ModelConfig::builder()
                .name("nvidia/Nemotron-3-Nano-30B-A3B")
                .weight(1)
                .build()
                .unwrap(),
        )
        .build()
        .unwrap();

    let mut client = client::Client::new(config);
    let request = chat::CreateChatCompletionRequestArgs::default()
        .messages([
            chat::ChatCompletionRequestSystemMessage::from("You are a helpful assistant.").into(),
            chat::ChatCompletionRequestUserMessage::from("How long it takes to learn Rust?").into(),
        ])
        .build()
        .unwrap();

    let result = Runtime::new()
        .unwrap()
        .block_on(client.create_completion(request));
    match result {
        Ok(response) => {
            for choice in response.choices {
                println!("Response: {:?}", choice.message.content);
            }
        }
        Err(e) => {
            eprintln!("Error: {}", e);
        }
    }
}

See more examples here folder.

Contributing

🚀 All kinds of contributions are welcomed ! Please follow Contributing.

Star History Chart

About

🧬 The adaptive model routing system for exploration and exploitation.

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •