|
| 1 | +version: 2 |
| 2 | + |
| 3 | +apis: |
| 4 | +- agents |
| 5 | +- batches |
| 6 | +- datasetio |
| 7 | +- eval |
| 8 | +- files |
| 9 | +- inference |
| 10 | +- safety |
| 11 | +- scoring |
| 12 | +- telemetry |
| 13 | +- tool_runtime |
| 14 | +- vector_io |
| 15 | + |
| 16 | +benchmarks: [] |
| 17 | +conversations_store: |
| 18 | + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/storage/conversations.db} |
| 19 | + type: sqlite |
| 20 | +datasets: [] |
| 21 | +image_name: starter |
| 22 | +# external_providers_dir: /opt/app-root/src/.llama/providers.d |
| 23 | +inference_store: |
| 24 | + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/storage/inference-store.db} |
| 25 | + type: sqlite |
| 26 | +metadata_store: |
| 27 | + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/storage/registry.db} |
| 28 | + type: sqlite |
| 29 | + |
| 30 | +providers: |
| 31 | + inference: |
| 32 | + - provider_id: watsonx |
| 33 | + provider_type: remote::watsonx |
| 34 | + config: |
| 35 | + url: ${env.WATSONX_BASE_URL:=https://us-south.ml.cloud.ibm.com} |
| 36 | + api_key: ${env.WATSONX_API_KEY:=key-not-set} |
| 37 | + project_id: ${env.WATSONX_PROJECT_ID:=project-not-set} |
| 38 | + timeout: 1200 |
| 39 | + - provider_id: openai |
| 40 | + provider_type: remote::openai |
| 41 | + config: |
| 42 | + api_key: ${env.OPENAI_API_KEY} |
| 43 | + - config: {} |
| 44 | + provider_id: sentence-transformers |
| 45 | + provider_type: inline::sentence-transformers |
| 46 | + files: |
| 47 | + - config: |
| 48 | + metadata_store: |
| 49 | + table_name: files_metadata |
| 50 | + backend: sql_default |
| 51 | + storage_dir: ${env.SQLITE_STORE_DIR:=~/.llama/storage/files} |
| 52 | + provider_id: meta-reference-files |
| 53 | + provider_type: inline::localfs |
| 54 | + safety: |
| 55 | + - config: |
| 56 | + excluded_categories: [] |
| 57 | + provider_id: llama-guard |
| 58 | + provider_type: inline::llama-guard |
| 59 | + scoring: |
| 60 | + - provider_id: basic |
| 61 | + provider_type: inline::basic |
| 62 | + config: {} |
| 63 | + - provider_id: llm-as-judge |
| 64 | + provider_type: inline::llm-as-judge |
| 65 | + config: {} |
| 66 | + - provider_id: braintrust |
| 67 | + provider_type: inline::braintrust |
| 68 | + config: |
| 69 | + openai_api_key: '********' |
| 70 | + tool_runtime: |
| 71 | + - config: {} # Enable the RAG tool |
| 72 | + provider_id: rag-runtime |
| 73 | + provider_type: inline::rag-runtime |
| 74 | + vector_io: |
| 75 | + - config: # Define the storage backend for RAG |
| 76 | + persistence: |
| 77 | + namespace: vector_io::faiss |
| 78 | + backend: kv_default |
| 79 | + provider_id: faiss |
| 80 | + provider_type: inline::faiss |
| 81 | + agents: |
| 82 | + - config: |
| 83 | + persistence: |
| 84 | + agent_state: |
| 85 | + namespace: agents_state |
| 86 | + backend: kv_default |
| 87 | + responses: |
| 88 | + table_name: agents_responses |
| 89 | + backend: sql_default |
| 90 | + provider_id: meta-reference |
| 91 | + provider_type: inline::meta-reference |
| 92 | + batches: |
| 93 | + - config: |
| 94 | + kvstore: |
| 95 | + namespace: batches_store |
| 96 | + backend: kv_default |
| 97 | + provider_id: reference |
| 98 | + provider_type: inline::reference |
| 99 | + datasetio: |
| 100 | + - config: |
| 101 | + kvstore: |
| 102 | + namespace: huggingface_datasetio |
| 103 | + backend: kv_default |
| 104 | + provider_id: huggingface |
| 105 | + provider_type: remote::huggingface |
| 106 | + - config: |
| 107 | + kvstore: |
| 108 | + namespace: localfs_datasetio |
| 109 | + backend: kv_default |
| 110 | + provider_id: localfs |
| 111 | + provider_type: inline::localfs |
| 112 | + eval: |
| 113 | + - config: |
| 114 | + kvstore: |
| 115 | + namespace: eval_store |
| 116 | + backend: kv_default |
| 117 | + provider_id: meta-reference |
| 118 | + provider_type: inline::meta-reference |
| 119 | +scoring_fns: [] |
| 120 | +telemetry: |
| 121 | + enabled: true |
| 122 | +server: |
| 123 | + port: 8321 |
| 124 | +storage: |
| 125 | + backends: |
| 126 | + kv_default: # Define the storage backend type for RAG, in this case registry and RAG are unified i.e. information on registered resources (e.g. models, vector_stores) are saved together with the RAG chunks |
| 127 | + type: kv_sqlite |
| 128 | + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/storage/rag/kv_store.db} |
| 129 | + sql_default: |
| 130 | + type: sql_sqlite |
| 131 | + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/storage/sql_store.db} |
| 132 | + stores: |
| 133 | + metadata: |
| 134 | + namespace: registry |
| 135 | + backend: kv_default |
| 136 | + inference: |
| 137 | + table_name: inference_store |
| 138 | + backend: sql_default |
| 139 | + max_write_queue_size: 10000 |
| 140 | + num_writers: 4 |
| 141 | + conversations: |
| 142 | + table_name: openai_conversations |
| 143 | + backend: sql_default |
| 144 | + prompts: |
| 145 | + namespace: prompts |
| 146 | + backend: kv_default |
| 147 | +registered_resources: |
| 148 | + models: |
| 149 | + - model_id: custom-watsonx-model |
| 150 | + provider_id: watsonx |
| 151 | + model_type: llm |
| 152 | + provider_model_id: watsonx/meta-llama/llama-3-3-70b-instruct |
| 153 | + shields: |
| 154 | + - shield_id: llama-guard |
| 155 | + provider_id: llama-guard |
| 156 | + provider_shield_id: openai/gpt-4o-mini |
| 157 | + vector_dbs: [] |
| 158 | + datasets: [] |
| 159 | + scoring_fns: [] |
| 160 | + benchmarks: [] |
| 161 | + tool_groups: |
| 162 | + - toolgroup_id: builtin::rag # Register the RAG tool |
| 163 | + provider_id: rag-runtime |
| 164 | +vector_stores: |
| 165 | + default_provider_id: faiss |
| 166 | + default_embedding_model: # Define the default embedding model for RAG |
| 167 | + provider_id: sentence-transformers |
| 168 | + model_id: nomic-ai/nomic-embed-text-v1.5 |
0 commit comments