@@ -87,8 +87,11 @@ def revise_centroids(
8787 """Recompute centroids as the mean of the assigned samples.
8888
8989 >>> data = np.array([[0.0, 0.0], [0.0, 1.0], [5.0, 5.0]])
90- >>> revise_centroids(data, 2, np.array([0, 0, 1]))
91- array([[0. , 0.5],\n [5. , 5. ]])
90+ >>> np.allclose(
91+ ... revise_centroids(data, 2, np.array([0, 0, 1])),
92+ ... np.array([[0.0, 0.5], [5.0, 5.0]]),
93+ ... )
94+ True
9295 """
9396 new_centroids : list [NDArray [np .floating ]] = []
9497 for i in range (k ):
@@ -110,7 +113,7 @@ def compute_heterogeneity(
110113
111114 >>> data = np.array([[0.0, 0.0], [0.0, 1.0], [5.0, 5.0]])
112115 >>> centroids = np.array([[0.0, 0.5], [5.0, 5.0]])
113- >>> compute_heterogeneity(data, 2, centroids, np.array([0, 0, 1]))
116+ >>> float( compute_heterogeneity(data, 2, centroids, np.array([0, 0, 1]) ))
114117 0.5
115118 """
116119 heterogeneity = 0.0
@@ -184,7 +187,7 @@ def kmeans(
184187 ... )
185188 >>> labels.tolist()
186189 [0, 0, 1]
187- >>> [round(value, 3) for value in heterogeneity]
190+ >>> [round(float( value) , 3) for value in heterogeneity]
188191 [0.5]
189192 >>> np.allclose(centroids, np.array([[0.0, 0.5], [5.0, 5.0]]))
190193 True
@@ -264,7 +267,7 @@ def report_generator(
264267 ... {'spend': [0.0, 50.0, 100.0], 'Cluster': [0, 0, 1]}
265268 ... )
266269 >>> report = report_generator(predicted, clustering_variables=['spend'])
267- >>> report.loc[report['Features'] == '# of Customers', 0].iloc[0]
270+ >>> float( report.loc[report['Features'] == '# of Customers', 0].iloc[0])
268271 2.0
269272 >>> float(report.loc[report['Features'] == '% of Customers', 1])
270273 0.3333333333333333
0 commit comments