In practice, the total derivative of $$F_{t\to s}(\mathbf{x}_t, t, s)$$ and the evaluation can be done in a single function call: `f, dfdt=jvp(f_theta, (xt, s, t), (v, 0, 1))`. Despite `jvp` operation only introduces one extra backward pass, it still incurs instability and slows down training. Moreover, the `jvp` operation is currently incompatible with the latest attention architecture. SplitMeanFlow<d-cite key="guo2025splitmeanflow"></d-cite> circumvents this issue by enforcing another consistency identity $$(t-s)F_{t\to s} = (t-r)F_{t\to r}+(r-s)F_{r\to s}$$ where $$s<r<t$$. This implies a discretized version of the MeanFlow objective which falls into loss type (c).
0 commit comments